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FEEDBACK CONTROL OF LINEAR TURBULENCE USING 
ELECTROMAGNETIC MICROTILES 

1. INTRODUCTION 

Control of turbulence leads to reduction in the viscous drag and suppression of turbulence
induced noise. Via direct numerical simulation of a low Reynolds number channel flow over a 
riblet surface, Crawford and Karniadakis1 have shown that drag reduction is uniquely related to 
the suppression of the surface-normal component ofturbulence near the wall. Bushnell,2 

Bandyopadhyay,3 and Gad-el-Hak4 describe research done in this area. Several experimental and . 
computational studies have also focused on the delay of boundary-layer transition through wave 
suppression by introducing waves of appropriate amplitudes and phases. 5'

6
'
7 In recent studies, 

Joshi8 and Joshi et al. 9 have taken system-theory approaches to the channel flow control by 
suction and injection at the wall. In a system-theory approach, the model is initially represented by 
a set of first-order differential equations, and then modem system and control theory is applied to 
the model design and to system analyses. 

A Lorentz force field is produced when electric and magnetic fields are applied in an 
electrically conducting medium. The potential application ofLorentz forces for drag reduction 
and turbulence control has been investigated by Henoch and Stace10 and Nosenchuck and 
Brown. 11 These approaches to electromagnetic turbulence control, however, do not use feedback 
algorithms. Nosenchuck and Brown11 have pulsed a surface-normal Lorentz force in an attempt to 
minimize the outward component of the surface-normal perturbations. On the other hand, Meng12 

has proposed a sensor-based active feedback control scheme and has modeled the turbulence 
production process as the appearance of a sequence of organized motions given by the 
probabilistic distributions of their scales. Meng then proposed a Markov chain control scheme that 
uses sensors and attempts to control the Lorentz forces over all phases of the turbulence 
regeneration process. At the Naval Undersea Warfare Center (NUWC) Division, Newport, RI, 
Bandyopadhyay has designed two-dimensional thin arrays of electromagnetic tiles with spatial 
scales on the order of millimeters that are suitable for high Reynolds number turbulence control. 13 

The electromagnetic forces produced by these microtiles are confined to within 1 millimeter from 
the wall and are promising for the boundary-layer turbulence control at high Reynolds numbers. 14 

Low Reynolds number laminar flow experiments have indicated that the NUWC microtiles 
produce "pillows" of vorticity that scale with their size. It is believed that the microtiles 
redistribute the prevailing vorticity in the shear flow but do not introduce vorticity into the flow. 
The observations ofthe pillows of vorticity have been later confirmed by direct numerical 
simulation. 15 The microtiles can be described as hairpin vortex-generators. Further numerical 
simulations of a turbulent channel flow over an array of two microtiles at low Reynolds numbers 
and subjected to a steady power supply indicate that an 8-percent suppression of turbulence can 
be achieved by the low-power microtiles. 16In this simulation, the channel flow Reynolds number 
Re was 50,470.8, based on channel half-width and maximum centerline velocity. The magnets and 
electrodes in each microtile were arranged in a checkerboard pattern, where one ideal Lorentz 
force was vertical (in reality, one force is three-dimensional near one comer). Within a microtile, 
the open area between the magnets and electrodes measured 4 mrn x 1 mm in the streamwise and 
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cross-stream directions, respectively. The applied maximum magnetic field strength B0 was 0.6 T 
and the voltage E was 6.0 V. An array of2-x-2 microtiles was considered, and the turbulence 
suppression reported above was attained at 12 wall units from 1 surface. 

The present study focuses on the control of a two-dimensional turbulent boundary layer on a 
flat plate and explores the feasibility of a closed-loop control. The system-theory approach taken 
here is similar to that of Joshi, 8'

9 however the Lorentz force field produced by microtiles is the 
control mechanism. Moreover, a flat-plate, boundary-layer flow is, because of the nature of 
boundary conditions, relatively complicated compared with the channel flow. Although turbulence 
control for any finite perturbation is the final goal, this study is limited to control of small 
perturbations in the base flow. The present approach to control via Navier-Stokes equations is 
rooted in the structural modeling of a turbulent boundary layer as advanced by Perry and Chong17 

and by Bandyopadhyay and Balasubramanian. 18
' 

19 Structural modeling of a turbulent boundary 
layer is better suited for feedback control than is statistical turbulence modeling. In conventional 
turbulence modeling, a turbulent flow is described by the Reynolds decomposition, where it is said 
to be composed of a time-mean flow and random perturbations. The time-mean flow is described 
statistically via closure models. However, in this report, along the lines ofBandyopadhyay and 
Balasubramanian, 18

' 
19 a turbulent boundary layer is described to be composed of a laminar-like 

base flow and random perturbations. Because feedback control requires deterministic signals, the 
perturbations are described via Fourier series and not statistically. To date there has been no study 
on feedback electromagnetic turbulence or any control that could probably achieve a higher level 
of turbulence suppression than an open-loop control can achieve. 

The problem ofturbulence control is complex because the governing equations of motion 
are nonlinear and infinitely dimensional and control theory for infinite-dimensional systems is not 
well developed. In this report, a finite-dimensional approximate model is derived based on the 
Galerkin procedure and Chebyshev polynomials. 8'

9
'
20

'
21

'
22 Based on this model, linear feedback 

control laws are derived using optimal control techniques and also by using a simple feedback of 
wall-shear stress for the stabilization of the perturbed flow to the base flow. It is shown that the 
unstable modes can be controlled by longitudinal as well as surface-normal forces. However, for 
lower wave numbers, longitudinal forces are more effective and require smaller electrode voltages 
for control compared with surface-normal forces . It is shown that a judicious choice of spatial 
distribution ofLorentz forces is important for designing stabilizing controllers, and this requires 
proper activation of the electrodes. Numerical results are obtained to show that, in the closed
loop system, asymptotic stabilization of the flow is accomplished using moderate input voltage for 
small perturbations. 

This report is organized as follows. Section 2 presents the mathematical model and 
addresses the control problem. A linear, finite-dimensional model is obtained in section 3. Section 
4 presents control laws, and simulation results are given in section 5. 

2 



2. MATHEMATICAL MODEL AND CONTROL PROBLEM 

A two-dimensional flow on a flat plate oflength tis considered. The x-axis is in the flow 

direction, and the y-axis is normal to the plate. The free stream velocity is Uoo. Reference values h 
= (Om/2), Uoo, and (h!Uoo) are chosen for the normalization oflength, velocity, and time, where Om 
is the boundary-layer thickness (location where 99.5 percent of the freestream speed is reached). 
Suppose that r independent voltages are applied to the microtiles for control. It has been found 
that Lorentz forces are proportional to the voltages applied to the electrodes because permanent 
magnets are used. 

The nondimensionalized Navier-Stokes equations of motion for the two-dimensional flow 
are given by 

(oujot) +u(oujox) + v(oufo/) = -(opjox) + Re-hv2u + k0F; (x,y,E) 
(ovjot)+ u(ovjox) +v(t3v/o/) = -(opjoy)+ Re+'12v+k0F;(x,y,E), 

and the continuity equation is 

(oujox) + (ovjoy) = o, 

(1) 

where k 0 = hj ( pU; ) ; u and v are the longitudinal and lateral velocities; p is the pressure field, 

pis the density of the fluid; Re is the Reynolds number, 50,470.8; F 1 and F 2 are the longitudinal 
and lateral Lorentz forces; and EeRr is the vector of applied voltages to electrodes. At the wall, y 
is -1, and 
y = 1 at the outer edge of the boundary layer at x = t1 = tlh. 

For the basic flow, approximate solutions of the boundary layer are given as 

u = U(y) = U.,g(TJ), 
TJ = (y + 1 )h/o(x), 

where g(TJ) is assumed to be one of the following forms: 23 

g( 17) =sin( 1r 17 /2) 
or 

Although the boundary layer on a flat plate is a function of x andy, to simplify model derivation, a 
base flow of the form 

u = U(y), v = O,p = P(x) 

is assumed. This is obtained by replacing o(x) with Om, a constant in the definition ofTJ. For the 
perturbed motion, 
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u = U(y) + u1 (x,y,t), v = v1 (x,y,t),p = P + p(x,y,t), (2) 

where u~, v~, and p represent small perturbations in the base flow. It will be seen later that, when 
the base flow is chosen to also be a function of x for linearization, a model is obtained in which all 
the modes are coupled-creating complexity in controller design. Restricting the region from the 
leading edge of the plate causes the base flow to be weakly dependent on x. 23 

By substituting the values in equation (2) in equation (1), neglecting higher order terms, 
eliminatingp1 (by subtracting partial derivative of the second equation with respect to x from the 
partial derivative of the first equation with respect toy in equation (1)), and using the continuity 
equation, the linear dynamics are obtained by 

(o 2u)8toy) -(o2v)8tox) +U(y)((o2u)8xoy) -(o2v)ox2
)) +U(2

lv1 

= Re-1((o 3uJ ox2cy) +(o3uJ cy3
) -(83vJ oxcy2

) -(83v) ox3
)) 

+k0((o~j8y)-(8 F;jox)), (3) 

where U( 2l = d2U(y)jdy 2
, and the arguments ofvarious functions are suppressed for simplicity. 

The continuity equation for the perturbations is 

(4) 

Theoretically, the boundary conditions are such that u1 and v1 tend toward zero as y tends toward 
infinity. However, the effect ofviscosity is negligible beyond the outer edge ofthe boundary layer. 
Therefore, in order to obtain a simplified model, the boundary conditions are assumed to be 

U 1 ( -1) = V 1 ( -1) = 0, 
u1(1) = v1(1) = 0. (5) 

The problem is to design a feedback control system so that, in the closed-loop system, 
perturbations u1 (x, y, 0) and v1 (x, y, 0) at t = 0 asymptotically converge to zero as t tends toward 
infinity. In this case, small but arbitrary perturbations in velocities u and v decay to zero, and the 
perturbed flow tends toward the base flow asymptotically. 

4 
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3. A FINITE DIMENSIONAL MODEL 

In this section, a finite dimensional model is obtained using the Galerkin's method with the 
Chebyshev polynomials as basis. 8' 

20
"
22 The choice of these Chebyshev polynomials has given 

useful results in the channel flow control problem of Joshi. 8' 
9 Some other independent set of 

functions can be used for derivation. However, the convergence property of the derived model to 
the actual system depends on the choice ofbasis. 

To this end, a perturbed stream function '1'1 (x,y, t) is chosen for the system (equation (3)) 

such that 

U1 = 01;/1 (x,y,t)/oy, 
v1 = -8'1'1 (x,y,t)jox (6) 

satisfy equation (4). Substituting the values in equation (6) in equation (3) provides a single, 
partial differential equation given by 

(o 3 '!') otox 2
) + (o 3 '1f) otoy 2

) + u(y )( (o 3 '!') oxoy 2
) + (o 3 'lf1 I ox 3

)) 

-U(
2l(o'lf1 fox) = Re-1V 2 (V 2 '1f 1)+k0((oF;joy)- (oF;/ ox)), 

where 

Motivated by the choice of periodic function ofx in the derivation of the Orr-Somerfield 
equation22 and due to the periodic fluctuations of the velocities in the longitudinal direction, a 
hypothesis can be formulated for a series solution for the stream function of the form 

"' "' 
'lf1 (x,y,t) = LL(a,Jt) co~na0x) + b,)t) sin(na0x))LJy), 

n=O m=O 

(7) 

(8) 

where Lm(y), (m = 0, 1, ... ,oo) are the set ofbasis functions formed by a suitable combination of 
Chebyshev polynomials that satisfy the boundary conditions (equation (5)). In view of equations 
(5), (6), and (8), it easily follows that functions Lm(y) must satisfy 

LJ-1) = Lm(l) = 0, 
OLJ-1)/oy =oLJI)/oy =O. 

Here the fundamental wave number is cx.o = (2n/t'1); ncx.o is the wave number of the nth harmonic 
term in the series solution, bom = 0; and a,m and b,m are the time-dependent, generalized 
coordinates (amplitudes of modes). 

Substituting equation (8) in equation (7) and truncating the series to obtain a finite 
dimensional model gives 

(9) 
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f f( ~nm cos( na0x) + bnm sin( na0x) )( L~) (y)- (na0x) 
2 

Lm (y)) 
n=O m=O 

= f f( -anm sin( na0x) + bnm co~na0x) )na0 ( ( (na0 ) 
2 

U + U(2
l )Lm (y)- UL~l (y)) 

n=O m=O 

+Re-1(anm cos(na0x)+bnm sin(na0x)) 

((na0r LJy)+ L~l -2(na0xY L~l(y) )+k0(oF;joy-oFzfox), (10) 

where an overdot denotes differentiation with respect to time, and L~l (y) = di Lm (y) / di . In this 

derivation, it is assumed that (M + 1) basis functions Lm(y) and N sinusoidal functions give a 
reasonable approximate model. If the design with chosen values forM and N is unsatisfactory and 
the residual modes in the closed-loop system are not small, then the controller needs to be 
redesigned using a model with larger values forM and N 

It has been shown in reference 13 that for each volt applied to the electrodes, the Lorentz 
force can be accurately expressed as k1 exp( -qo d), where dis the lateral distance from the wall 
and it is negligible for d > 2 mm. To this end, spatially distributed Lorentz forces are expressed in 
a Fourier series oftheform (i = 1, 2) 

N 

F; = kl:(Fnil cos(na0x)+Fni2 sin(na0x))exp(qy)E, (11) 
n=O 

wherey E[-1, Ym ], k = kok1 exp(q), q = -qo h, and Fnik is an r-row vector. It is assumed that the 
Lorentz force is negligible for y 2: Ym· The values of qo and k1 are obtained from the Lorentz force 
plot given in reference 13. 

Because the trigonometric functions form an orthogonal set, substituting equation (11) in 
equation (10), multiplying equation (10) by cos(naox) (sin(naox)), and integrating over [OA] give 
the differential equations for anm (bnm) given by 

f(~nm( L~l(y)- (na 0 )
2 
LJy))) = fbnmnaa(( (na 0 )

2 
U + U(2

J )Lm(Y)- UL~l(y)) 
m=O m=O 

+Re-1anm((na 0r LJy) + L~l(y)- 2(na0r L~J (y)) 
+k(qFn11 -na0F,22 )exp(qy)E, 

f(bnm( L~l(y) -(na0r LJy)))= f-anmnao(((na 0r U +U( 2
J )LJy)- UL~l(y)) 

m=O m=O 

+Re-1bnm((na0r Lm(Y) + L~l(y)- 2(na0V L~l(y)) 
+k(qFn12 +na0F,21 )exp(qy)E. (12) 

The inner product of Ls(y) and Lm(y) is defined as22 

(13) 
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Define matrices as (s= 0,1, ... ,M; m = 0,1, ... ,M) 

Dno = ((DnoLJ = (rs,{r~l -(na oV Lm)), 

Dnl = ((nn]LJ = (rs,((na or Lm +L~l -2(n0a 0 )

2 L~l )), 
Dn2 =((Dnz)sJ =(Ls , (-UL~l +((na 0rU +U

2
)Lm)), 

Ly =((L0 ,exp(qy)), ... ,(Lm,exp(qy))r, 

Bnl = kLAqFnll -naoF,m), 

Bn2 = kLY( qF,l2 + na OF,21)' 

where (Dni)sm denotes the s-mth element of matrix Dni , T denotes transposition, and in the 
computation of Ly integration is performed only over [ -1, Ym] where the Lorentz forces are 
significant. 

By using the definitions of matrices in equation (14), equation (12) is written in a matrix 
notation as 

. 
Dno an= Dn1an + Dnzbn + Bn1E, . 
Dno bn = Dn2an + Dnlbn + Bn2E' 

(14) 

(15) 

where an= (ano, ... ,anMl and bn= (bno, ... ,bnM{ The state subvector Xn =(a/, b/)T is associated 
with the wave number nac and it is described by 

(16) 

For n = 0, 

(17) 

where xo= ao =(aoo, ... ,aoMl, Ao =D~~D0 1 , and B0 =D~B01 • The vector 

Xa = (x~ , ... ,x~) =(a~ ;a{ ,br ; ... ;a~,b~)T 

7 



is called the state vector of the system (equations ( 16) and ( 17) ), because Xa completely describes 
the perturbed velocity vector in the boundary layer. For a given initial condition Xa(O) and the 
electrode voltage E(t), equations (16) and (17) can be solved for: 

x;(t),i = O,I, ... ,N, t 2:?: 0. 

These time-dependent coefficients are substituted in equation (8) to obtain the perturbed stream 
function and the velocity vector field. 

It is interesting to note that in view of equation (16), the dynamics associated with various 
wave numbers are decoupled forE= 0. The decoupling of modes is not possible ifx-dependent 
base flow is taken. It will be seen that decoupling considerably simplifies control system design. 

Now the problem offlow control is solved by deriving feedback control laws ofthe form 

such that, in the closed-loop system, xa(t) asymptotically tends toward zero, where Xc is a chosen 
subvector of the state vector x a. 

8 
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4. CONTROL SYSTEMS 

Using equations (16) and (17), the complete system can be written in a state variable form: 

(18) 

where Aa = diag(Ao, Al,· .. , AN) and the input influence matrix isBa = (B~ ,B[ , ... ,B~ r. To 

determine the fluctuations of the wall-shear stress at a point x*, because it is proportional to 
du1/dy, consider an output variable Ya = dutfdy(x*, y = -1, t) written as 

(19) 

where the output matrix Ca is 

ca =(cao,•••,cal\f), 
Lc = (L~2l( -1), ... ,L~( -1) ), 

CaD= Lc, 

and for n :t:. 0, 

This output can be used for feedback for stabilization or to directly controlya. 

The concept of controllability plays an important role in system theory. 24 The system 
(equation (18)) is said to be controllable if, given any two arbitrary points x~ and x~ in the state 

space, there exists a control E that can steer the system (equation ( 18)) from x~ to x~ in a finite 
time. The system is controllable if, and only if, the controllability matrix CO defined as 

CO= (Ba,AaBa, ... ,A;-1BJ, 

has rank s =(2N+ 1 )(M+ 1 ), which is the dimension of state vector Xa. The spatial distribution of the 
Lorentz forces must be chosen to satisfY the controllability conditions. For the controllable 
system, a linear feedback law to stabilize the system can be chosen. 

For clarity, it is assumed that the electrode voltage E(t) is a scalar function. The design for 
the multi-input system can be similarly done. It is interesting to note that in the model (equation 
(18)), not all modes are unstable. For the chosen parameters identified in section 5, it is found that 
only matrix A 1 associated with the fundamental wave number a.o is unstable, the remaining 
matrices A; are stable. Because the electrode voltage is limited, it is a good idea to design a 
control system to stabilize only the dynamics of unstable wave numbers and to leave the responses 
of other modes unaltered. The dynamics of the unforced system are decoupled, therefore, one 
way to preserve the dynamics of the stable modes is to choose the spatial distribution of the 
Lorentz forces such that the control influence matrix Bk of the stable modes are null; that is, 

9 



B0 = 0, Bn = 0, n -:t:. 1. 

For this choice, when the feedback loop is closed to stabilize the unstable mode using the 
measured signalya, control input will not excite the remaining modes. 

(20) 

The condition in equation (20) can be satisfied by choosing F1 and F2 of the form (i = 1, 2) 

(21) 

where ( F;~1 +F..~ 2) Yz = 1 . The sinusoidal distribution of Lorentz forces requires appropriate 

activation of the electrodes. If other harmonic terms are present in equation (21 ), the dynamics of 
other wave numbers will be excited when the measured signal Ya is fed back. 

Because either the longitudinal or the surface-normal force for control can be chosen, a 
question arises concerning the effectiveness ofLorentz forces for control. In view of the input 
influence matrices Bn 1 and Bn2 in equation (14), if 

na0 >-q , 

the input influence matrix Bn is larger when surface-normal force is used. However, for smaller 
wave numbers not satisfying the above inequality, the longitudinal force is preferable for 
stabilization because smaller electrode voltage will be needed for control. In section 5.2 a simple 
feedback law using wall-shear stress (or du1/dy(x*, y = -1, t) for stabilization is simulated. 

Several control techniques for linear systems are available for the control system design and 
can be applied to obtain different response characteristics and to meet design specifications. For 
the choice ofLorentz force as given in equation (21), the optimal control technique can be used. 
Consider the dynamics associated with the fundamental wave number 

which is unstable. Here x1 =(a{ ,btr is the state vector associated with the wave number a.o. 
The optimal control is obtained by minimizing a quadratic performance index of the form 

J = J ( x{ Qx1 + J.E2 )dt, 
0 

(22) 

(23) 

where Q is a positive definite symmetric matrix, and A. > 0. The matrices Q and A. are selected to 
weigh the relative importance of performance measures caused by the state vector perturbations 
x1 and the electrode voltage E(t). The optimal control law is 

E = -X1Br Rxl = -Kx~ , (24) 

where the positive definite symmetric matrix R is the solution of the Riccati equation24 

RA1 +AtR-RB1X
1BtR+Q=O, 

10 



and K is a row vector of dimension 2(M+ 1 ). 

Substituting linear control law (equation (24)) in equation (22) gives the closed-loop 
system: 

;I = ( A1 - B1K)x~> 

for which the matrix (A1 - B1K) is Hurwitz (i.e., all the eigenvalues of(A1 - B1K) have negative 

real parts). Thus, in the closed-loop system, x1 (t) asymptotically tends toward zero, which 
implies that the perturbations u1 and v1 decay to zero as well. The response characteristics for the 

state vector x1 depend on the eigenvalues of the matrix (A 1 - B1K). 

Substituting Qy~ , Q > 0 in place of x{ Qx1 in the performance index can be done for 
minimization, where 

y 1 = (cos(a 0X*)Lc ,sin(a0x*)Lc)x1dc1x1 (25) 

for directly influencing du1/dy at x = x* . By a proper selection of the weighting matrix, Q, and the 
scalar, A., a tradeoff between the speed of convergence of the perturbed state to the equilibrium 
state and the magnitude of the electrode voltage, which is required for control, can be obtained. 
Figure 1 shows the complete closed-loop system, including the optimal controller (solid line) and 
the simple controller using wall-shear stress feedback (dotted line). In the feedback loop using 
wall-shear stress feedback, the gain K is scalar. 

LINEAR BOUNDARY 
LAYER MODEL (EQN. (18)) STATE OUTPUT 

MATRIX ELECTRODE 
VOLTAGE E 

VECTOR (EQN. (19)) , y (= Ji PERTURBATION IN . x., = A.,x., +B., E 1---x.::..n r--1~ t----.---"--.WALL-SHEAR STRESS) 

SUBVECTOR 

Jet . 
GAIN VECTOR FEEDBACK LOOP : 

• : Yt (EQN. (25)) 
• r••••••••• 

' • ' ' OR 
·-- ---------------··--"' -K ~---- ------ .. ----------------- .... ! 

: _________ :SCALAR GAIN ~ 

NOTES: 
SOLID LINE - OPTIMAL FEEDBACK LOOP 
DOTTED LINE- WALL-SHEAR STRESS PERTURBATION FEEDBACK LOOP 

Figure 1. Closed-Loop Lorentz Force Control System 

11/12 
Reverse Blank 



5. SIMULATION RESULTS 

In this section the results of simulation using MATLAB® and Simulink™ software are 
presented. To derive the model, it is assumed that the normalized velocity is 

U(y) = sin(;r(y + 1)/4). The parameters chosen for high Reynolds number flow are Uoo = 17(mls), 

h = (6.77/2)mm; kinematic viscosity ofwater, v = 11.4E-7m2/s, v = P!l, ti = 2n; and density of 

water, p = 1000(kg/m3
). For simulation, the values ki = 45(N/m3

) and q0 = (1000/1· 3){m-1
) are 

used. These parameters are obtained from reference 13. The fundamental wave number is a 0 = 1. 
For a choice ofM= 2 in the series expansion (equation (10)), a sixth-order state variable model 
for each wave number is obtained. The three elements of the basis taken from reference 8 are 

L0 (y) = 3 - 4 I; (y) + 1;, (y) , 

L1 (y) = 2 y - 3 I; (y) + ~ (y), 

L2(y) = 1.5J;(y)- 2.5~(y) + J;(y), 

where Tn(y) is the Chebyshev polynomial. 22 

For the chosen parameters, the matrices An, Bn, and Cn are computed. It is found that, 
except for matrix A~, all other matrices, An, are stable. In fact, AI, which is associated to wave 
number ao, has a pair of unstable eigenvalues and the remaining four eigenvalues of A I are stable. 
For any nonzero initial condition the solution of the uncontrolled system diverges. A twelfth
order, open-loop system including the dynamics for wave numbers a 0 and 2a0 was simulated with 
the initial condition ai(O) = bi(O) = 1000(5·4, 4-05, 2-7/, and a 2(0) = b2(0) = ai(0)/0-18. The 
divergent and oscillatory responses are shown in figure 2. The plots are shown for the velocity 
perturbations ui(x* ,y*,t), vi(x* ,y*,t) at the point (x*, y*) = (0.75ti,-0.409), and also for 

C1(x*,-1,t), where C1 = (pjo.su;,)(atJ!Jy) is evaluated at (x = x*, y* = 0). Although a control 

system can be designed to modify the responses of a set of modes, for simplicity, stabilization of 
dynamics of only the unstable mode is considered in this report. The spatial distribution of the 
Lorentz forces is assumed as given in equation (21) for the purpose of control. 

Simulation results are obtained using an optimal control system and a simple controller that 
uses wall-shear stress feedback at one point. For simulation of the optimal controller, it is 
assumed that complete information on the state variable, xi, ofthe subsystem associated with 
wave number ao to be controlled, is available. Unlike the optimal controller, synthesis of the 
simple controller is relatively easy, because only a measured signal at the wall is required for 
feedback. For optimal controller synthesis, each component of vector xi must be known. 

5.1 OPTIMAL CONTROL 

Using the optimal control technique, a feedback controller was designed for the decoupled 
system in equation (22) describing the dynamics associated with the fundamental wave number. A 
quadratic term Qy; was used in the performance index with Q = 0.01 and 'A= 30. The weighting 

matrix Q and A. were chosen after several trials by observing the simulated responses. The 
complete closed-loop system including the dynamics associated with wave numbers a 0 and 2a0 
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and the feedback control law, E = -Kx~, was simulated. The initial condition of figure 2 was 
retained. It was assumed that longitudinal control, F111 = 1; surface-normal control, F 121 = 1; and 
the remaining parameters Flik in equation (21) were set to zero. Selected responses are shown in 
figures 3 and 4 using longitudinal and surface-normal force control, respectively. The plots are 
shown for the electrode voltage E, velocity perturbations u1(x* Jl* ,t), v1(x* Jl* ,t), and C1(x* ,O,t). 
In the closed-loop system, well-damped responses with moderate input voltage are observed. The 
corresponding interaction parameter N* = h(Lorentz force/inertial force) is 0.0678£, where the 

Lorentz force at the wall is 45E(N) and the inertial force is (1/2)p(8U/0') evaluated at the wall. 

As predicted, the surface-normal force control requires considerably larger electrode voltage 
compared to the longitudinal force control, since a.o < -q. It is important to note that using this 
control law, stabilization of all modes is accomplished, even if Bn, n :t: 1 are nonzero, since only 
exponentially decaying signal x1 of the closed-loop system is superimposed on the stable dynamics 
for the remaining wave numbers. However, estimation of signal x1 from measured signals must be 
made for the synthesis of the optimal controller. 

5.2 STABILIZATION BY WALL-SHEAR STRESS FEEDBACK 

Because the wall-shear stress is a constant multiple of du1/dy, a simple feedback of the 
derivative of du1(x* J1 = O,t)ldy is considered by choosing E = -Kdu1/dy. In the derivative du1/dy, 
the contribution of only the fundamental component x1 of the state vector is retained and the 
higher harmonics are neglected. The gain K is chosen such that, in the closed-loop system, (A 1-

KB1C1) is Hurwitz. Suitable values for longitudinal force control are F 112 = 1 and K = 

0. 05 ( U "'/h); and suitable values for surface-normal force control are F 121 =0 and K = 

0.05(U"'/h)q. The feedback gains were selected after several trials so that the peaks in the 

electrode voltage are not too large during the transient period. The feedback gain K for 
stabilization is a function of the position x* where the wall-shear stress is measured. With this 
choice of gains, the input influence matrix B 1 is the same for both force controls. The remaining 
parameters Flik were assumed to be zero. To reduce voltage magnitude, the initial conditions were 
chosen to be one-ninth the values of (a;(O), b;(O)) (i = 1,2) assumed in section 5.1. Selected 
responses for the longitudinal and surface-normal force control are shown in figures 5 and 6. 

The responses for u1, v1, and C1 are identical for the longitudinal and surface-normal force 
control. Unlike the optimal controller, responses are poorly damped and, in spite of smaller 
perturbations in the initial condition, considerably large electrode voltage is required. This result 
should not be a surprise because the optimal controller design requires complete information on 

x1 . For this simple control, ( du1 / dy) feedback, which is merely a linear combination of state 

variables, is used. Larger peaks in the input voltage are observed for lateral control in this case 
also. For the choice of spatial distribution of Lorentz forces made, stability in the closed-loop 
system is preserved, even if the complete measured wall-shear stress including higher harmonics is 
fed back because the dynamics associated to all wave numbers except the fundamental one, are 
stable and the control input influence matrix Bn = 0 for n = 0 and n > 1. These responses can be 
improved when a feedback controller that uses wall-shear stress signals measured at several 
locations on the wall is designed. 
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6. CONCLUSIONS 

This report examined a system-theory approach to the control ofhigh Reynolds number sea 
water flow over a flat surface using electromagnetic forces produced by microtiles. Navier-Stokes 
equations, which include the effect ofLorentz forces, were linearized; and, using the Galerkin 
procedure, a linear, state variable model of finite dimension was derived. Based on this model, 
linear feedback control laws for system stabilization were obtained. It was shown that by 
judiciously selecting spatially distributed Lorentz forces, asymptotic stability in the closed-loop 
system can be accomplished using longitudinal and surface-normal force control. For lower wave 
numbers, longitudinal force control is more effective since it requires smaller electrode voltage to 
suppress velocity perturbations. However, a control system that uses wall surface normal force 
requires smaller electrode voltage compared with the longitudinal force controller when control of 
modes associated with higher wave numbers is desired. Although stabilization is possible using 
simple feedback of measured wall-shear stress signal, an optimal controller gives faster and well
damped responses. However, for the synthesis of the optimal controller, it is necessary to design 
a state estimator to reconstruct the state for feedback using signals measured by the sensors. 

Several problems remain to be solved in this area: questions related to the effect of mode 
truncation, state estimation, control and observation spillover, digital implementation, and 
extension of the system-theory approach to nonlinearly perturbed dynamics, which plays a key 
role in turbulent flow, are all important and require further investigation. 
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